Exam. Code : 103202 Subject Code : 1028

B.A./B.Sc. Semester—II MATHEMATICS (Calculus) Paper-II

Time Allowed—3 Hours] [Maximum Marks—50

Note :- Attempt FIVE questions in all selecting at least TWO questions from each section. All questions carry equal marks.

SECTION-A

I. (a) Show that $\lim_{(x, y) \to (0, 0)} \frac{x^3 + y^3}{x - y}$ does not exist.

(b) Show that the function f, where

$$f(x, y) = \begin{cases} x \ y \ \frac{x^2 - y^2}{x^2 + y^2}, & \text{if } x^2 + y^2 \neq 0\\ 0, & \text{if } x = y = 0 \end{cases}$$

is differentiable at origin.

.5.5

- II. (a) State and prove Young's Theorem.
 - (b) If $z = x^3 xy + y^3$, $x = r \cos \theta$, $y = r \sin \theta$, find dz dz 5.5 dr' de .

2540(2517)/STB-13925

1 (Contd.)

a2zpapers.com

Www.a2zpapers.com We provide GNDU question papers, PTU question papers, PU question papers

a2zpapers.com

- III. (a) Show that the function $f(x, y) = 2x^4 3x^2y + y^2$ has neither a maximum nor a minimum value at (0, 0), where $f_{xx}f_{yy} - (f_{xy})^2 = 0$.
 - Expand $x^4 + x^2y^2 y^4$ about the point (1, 1) up to (b) terms of the second degree. 5,5
- IV. (a) The roots of the equation

$$(\lambda - x)^3 + (\lambda - y)^3 + (\lambda - z)^3 = 0$$

in λ are u, v, w. Prove that :

$$\frac{\partial(\mathbf{u},\,\mathbf{v},\,\mathbf{w})}{\partial(\mathbf{x},\,\mathbf{y},\,\mathbf{z})} = -2\,\frac{(\mathbf{y}-\mathbf{z})\,(\mathbf{z}-\mathbf{x})\,(\mathbf{x}-\mathbf{y})}{(\mathbf{v}-\mathbf{w})\,(\mathbf{w}-\mathbf{u})\,(\mathbf{u}-\mathbf{v})}\,.$$

Find the envelope of the family of lines (b) $x \cos^3\theta + y \sin^3\theta = a$,

where θ is parameter.

- V. Find the envelope of the ellipses having the axes of (a) co-ordinates as principal axes and sum of their semiaxis is constant.
 - Let z be a function of x and y. Prove that if (b) $x = e^{u} + e^{-v}$, $y = e^{-u} - e^{v}$ then

$$\frac{\partial z}{\partial u} - \frac{\partial z}{\partial v} = x \frac{\partial z}{\partial x} - y \frac{\partial z}{\partial y}.$$
 5,5

SECTION-B

VI. (a) Show that
$$\int_{0}^{1} dx \int_{0}^{1} \frac{x^{2} - y^{2}}{x^{2} + y^{2}} dy = \int_{0}^{1} dy \int_{0}^{1} \frac{x^{2} - y^{2}}{x^{2} + y^{2}} dx$$
.

(b) Evaluate $\iiint z^2 dx dy dz$ taken over the region common to the surfaces $x^2 + y^2 + z^2 = a^2$, and $\mathbf{x}^2 + \mathbf{y}^2 = \mathbf{a}\mathbf{x}.$ 5,5

2540(2517)/STB-13925

2

(Contd.)

5.5

a2zpapers.com

We provide GNDU question papers, PTU question papers, PU question papers

VII. (a) Compute I =
$$\iiint \sqrt{1 - \frac{x^2}{a^2} - \frac{y^2}{b^2} - \frac{z^2}{c^2}} dx dy dz$$
 taken
over the region $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.

(b) Evaluate
$$\iint_{0}^{x} |\cos(x + y)| dx dy$$
. 5,5

VIII.(a) Change the order of integration in

$$\int_0^1 \int_0^{\sqrt{2-x^2}} \frac{x}{\sqrt{x^2 + y^2}} dx dy \text{ and hence evaluate.}$$

(b) Show that :

$$\iiint_E (ax + by + cz)^2 dx dy dz = \frac{4}{15} \pi (a^2 + b^2 + c^2)$$

where domain E is the sphere $x^2 + y^2 + z^2 \le 1$.
5,5

- IX. (a) Compute the surface area S of the sphere $x^2 + y^2 + z^2 = a^2$.
 - (b) Evaluate $\iiint dx dy dz$ where R is the region common to the cylinders $x^2 + y^2 = a^2$ and $x^2 + z^2 = a^2$. 5.5
- (a) Compute the area bounded by the parabolas X. $y^2 = ax$, $y^2 = bx$, $x^2 = py$, $x^2 = qy$, where 0 < a < b, and 0 .

(b) Evaluate $\iint_{E} \sqrt{a^2 - x^2 - y^2} dx dy$, where E is the region bounded by the circle $x^2 + y^2 = ax$. 5.5

2540(2517)/STB-13925

3

9500

a2zpapers.com

We provide GNDU question papers, PTU question papers, PU question papers