Exam. Code : 103202
 Subject Code : 1028

B.A./B.Sc. Semester-II
 MATHEMATICS
 (Calculus)
 Paper-II

Time Allowed- 3 Hours]
[Maximum Marks- 50
Note :-Attempt FIVE questions in all selecting at least TWO questions from each section. All questions carry equal marks.

SECTION-A

I. (a) Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}+y^{3}}{x-y}$ does not exist.
(b) Show that the function f , where

$$
f(x, y)=\left\{\begin{array}{cl}
x y \frac{x^{2}-y^{2}}{x^{2}+y^{2}}, & \text { if } x^{2}+y^{2} \neq 0 \\
0, & \text { if } x=y=0
\end{array}\right.
$$

is differentiable at origin.
II. (a) State and prove Young's Theorem.
(b) If $z=x^{3}-x y+y^{3}, x=r \cos \theta, y=r \sin \theta$, find $\frac{\partial z}{\partial r}, \frac{\partial z}{\partial \theta}$.
III. (a) Show that the function $f(x, y)=2 x^{4}-3 x^{2} y+y^{2}$ has neither a maximum nor a minimum value at $(0,0)$, where $\mathrm{f}_{\mathrm{xx}} \mathrm{f}_{\mathrm{yy}}-\left(\mathrm{f}_{\mathrm{xy}}\right)^{2}=0$.
(b) Expand $x^{4}+x^{2} y^{2}-y^{4}$ about the point $(1,1)$ up to terms of the second degree.
IV. (a) The roots of the equation

$$
(\lambda-x)^{3}+(\lambda-y)^{3}+(\lambda-z)^{3}=0
$$

in λ are u, v, w. Prove that :

$$
\frac{\partial(u, v, w)}{\partial(x, y, z)}=-2 \frac{(y-z)(z-x)(x-y)}{(v-w)(w-u)(u-v)}
$$

(b) Find the envelope of the family of lines

$$
x \cos ^{3} \theta+y \sin ^{3} \theta=a
$$

where θ is parameter.
V. (a) Find the envelope of the ellipses having the axes of co-ordinates as principal axes and sum of their semiaxis is constant.
(b) Let z be a function of x and y . Prove that if $x=e^{u}+e^{-v}, y=e^{-u}-e^{v}$ then

$$
\begin{array}{r}
\frac{\partial z}{\partial u}-\frac{\partial z}{\partial v}=x \frac{\partial z}{\partial x}-y \frac{\partial z}{\partial y} \\
\text { SECTION-B }
\end{array}
$$

VI. (a) Show that $\int_{0}^{1} d x \int_{0}^{1} \frac{x^{2}-y^{2}}{x^{2}+y^{2}} d y=\int_{0}^{1} d y \int_{0}^{1} \frac{x^{2}-y^{2}}{x^{2}+y^{2}} d x$.
(b) Evaluate $\iiint_{E} z^{2} d x d y d z$ taken over the region common to the surfaces $x^{2}+y^{2}+z^{2}=a^{2}$, and $x^{2}+y^{2}=a x$.

5,5

2540(2517)/STB-13925
2
(Contd.)
VII. (a) Compute $I=\iiint \sqrt{1-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}} d x d y d z$ taken over the region $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.
(b) Evaluate $\int_{0}^{\pi} \int_{0}^{\pi}|\cos (x+y)| d x d y$.
VIII. (a) Change the order of integration in $\int_{0}^{1} \int_{0}^{\sqrt{2-x^{2}}} \frac{x}{\sqrt{x^{2}+y^{2}}} d x d y$ and hence evaluate.
(b) Show that:
$\iiint_{E}(a x+b y+c z)^{2} d x d y d z=\frac{4}{15} \pi\left(a^{2}+b^{2}+c^{2}\right)$
where domain E is the sphere $x^{2}+y^{2}+z^{2} \leq 1$.
IX. (a) Compute the surface area S of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$.
(b) Evaluate $\iiint_{R} d x d y d z$ where R is the region common to the cylinders $x^{2}+y^{2}=a^{2}$ and $x^{2}+z^{2}=a^{2}$. 5,5
X. (a) Compute the area bounded by the parabolas $y^{2}=a x, y^{2}=b x, x^{2}=p y, x^{2}=q y$, where $0<a<b$, and $0<\mathrm{p}<\mathrm{q}$.
(b) Evaluate $\iint_{E} \sqrt{a^{2}-x^{2}-y^{2}} d x d y$, where E is the region bounded by the circle $x^{2}+y^{2}=a x . \quad 5,5$

